HUD Year 2000 Readiness Guide

January 5, 1998

chapter 3: Configuration Management

3. 1.

3.2.

Introduction

This chapter describes configuration management (CM) concepts essentia
to Year 2000 renovations. It is especially important for the Year 2000
effort to ensure that Year 2000 certified code is not inadvertently replaced
by an earlier, non-certified version. Many of HUD’s application
development teams may have adequate procedures to control paralle
development. Some of HUD's developers intend to avoid it by managing
the Year 2000 activities through sequential releases.

Year 2000 changes will take place over an extended period of time. There
is a high probability that new requirements will emerge or unavoidable
maintenance activities will surface during this time. It is essential that
configuration management plans and policies are instituted and followed to
minimize the risks associated with this kind of parallel development.

In this chapter we will cover the fundamentals of configuration
management, including HUD’s policy for Year 2000 -configuration
management, and list activities that can be added to current developmente
practices to provide continuous improvement.

Understanding Configuration Management

When successfully executed, configuration management protects and
defends the integrity and quality of information systems being developed or
changed. Generally configuration management includes:

» Tools to maintain the integrity of the application system and its
components (source, object, JCL, copybooks, etc.);

» A process to record system changes as they occur, and

» An audit trace capability throughout the life of the project.

Although configuration management is perceived as a very meticulous and
time consuming process, it safeguards the operational integrity of our
applications by administering source and object libraries containing all the
components of each business application. It includes the techniques neede
to meet the requirements as listed able 3-1

3-1

HUD Year 2000 Readiness Guide

Chapter 3 4 Configuration Management January 5, 1998
Table 3-1: HUD Year 2000 Configuration Management Activities and Requirements
Matrix
Requirement | Technique(s) |
Manage software Software migration addresses controls that specifically manage
migration movement of code into libraries. Most of the time we think of restricting

the unauthorized movement of code into the production library, but
software migration may also assure that code is simultaneously
promoted to more than one library (e.g., from a staging library to both
production and a duplicate production library).

Support back out and [Backout and recovery support the ability to restore the production
recovery environment to its previous state, quickly and with confidence.

Enable parallel Parallel development requires library management procedures to control
development through |access and replacement of source code. It ensures production changes
library management are not inadvertently overwritten because changes were introduced to
production between the time the source for a modification was first
copied and the modifications were reintroduced. A programmer is
assured access to the most recent production version. The process
ensures that those with code checked out to them are advised of others
who are performing parallel development on that same module. It may,
alternatively, deny access to a module’s source code until it is checked
back in to prevent two programmers from working on the same module

concurrently.
Support component Component identification and version tracking retain unique references,
identification and identifying all of the components of an application, as well as their
version tracking versions.

Support change control |Change control facilitates being able to identify precisely what changed
between events or points in time.

Each development team can readily evaluate the adequacy of their current
configuration practices. Indicators that current configuration management
practices are adequate include the ability to:

» ldentify the exact set of code used by the application and corresponding
to the objects modules actually used,;

» Create a definitive, complete listing of application components.

Under normal circumstances the procedures followed by the development
teams are probably adequate to administer the system components and
avoid accidentally overlaying a good component with an earlier version or
overlooking a component. As the amount of change grows in response to
the breadth and depth of Year 2000 activity, we will begin to see the signs
of strained resources, the discipline breaking down, the hero forgetting
something.

Pragmatically, it is very unlikely that we will be able to completely avoid
parallel development (two teams working to introduce different
requirements to the same code modules concurrently). This will strain less
sophisticated methods of configuration management even further.

The need for strong library management exists when modifications are
being made to code concurrently. Developers usually experience this
parallel development when emergency fixes are needed while the module is
actively being enhanced.

—
3-2

HUD Year 2000 Readiness Guide
January 5, 1998

Chapter 3 4 Configuration Management

3.3.

3.4.

In such a case, the programmer making the enhancements needs to tal
special measures to incorporate the appropriate fix. Failing to incorporate
the emergency fix could result in the enhancement unwittingly reversing
out the fix.

HUD’s Year 2000 Configuration Management Policy

A configuration management process shall be instituted and followed to
protect and defend the integrity and quality of information systems
developed or maintained during the especially volatile period of Year 2000
renovations. The process shall meet the following requirements:

» Change control: the controlled introduction of change to any
component; addresses both authorizations and isolation of components
to prevent contamination or the introduction of unauthorized change.

» Status accounting:the process and procedural methods that enable
traceability of a change (e.g., how, when and why did this occur;
facilitate backout) and current status for changes either planned or in-
process (e.g., who, what, why, when).

» Component identification: the identification of the items to be
controlled, including techniques to determine generation/versions, and
how it was derived.

» Physical and functional verification: the review of process controls
and techniques that demonstrate the result is derived exclusively from
the source (e.g., that the test results were successful, that the test plan
and scenarios verified the system requirements, that all of the authorizec
components and only authorized components were used at any stage).

Table 3-2 (on the following page) shows how specific configuration
management activities support these requirements.

Recommendations and Suggested Actions

Certain practices should be seriously considered for immediate
implementation to facilitate addressing configuration management. (Note:
These practices represent a starting set and are not intended to reflect
complete and fully comprehensive configuration management process.)

» Establish Libraries to isolate source and object code. Consider

establishing the following libraries:

® Production source: containing all appropriate source components
that were used in generating the production software;

® Production object: containing the production software;

®* Year 2000 Development: containing the system source components
being renovated for Year 2000;

®* Maintenance: containing the system source components requiring
change that is independent from, and concurrent with, Year 2000
changes;

—
3-3

HUD Year 2000 Readiness Guide
Chapter 3 4 Configuration Management January 5, 1998

Table 3-2: HUD Year 2000 Configuration Management Activities

Configuration Management Activity |Requirement Addressed ‘

1. Establish a production baseline constituting all the necessary |Component Identification
and sufficient source code for the application and prohibit
write permission to the baseline library except through a
single control point.

Source code includes JCL/ECL copybooks, procedures,
database descriptions, Macros, and so on.

2. Confirm this production baseline is equivalent to the Verification
executables in production by compiling the baseline source
and conducting a parallel test.

. Implement conventions (for example, naming conventions and | Component Identification and
time date stamps) necessary to be able to identify and track |Status Accounting
the version of source and executables.

. Distribute copies of requested production baseline source Status Accounting
module for any development or maintenance from the control |and Change Control
point. The control point will make note of the source version
and the name of the developer who received the copy.

w

~

5. Modify the code and perform appropriate testing in the Change Control
development libraries by the application developer.
6. Return the modified source to the control point when the Change Control

developer has confirmed testing and is ready for more
controlled, rigorous Independent Verification and Validation
(IV&V) or acceptance testing.

7. Reconcile the modified source with the production baseline |Change Control and
source it will replace; avoid accidentally overlaying Verification
maintenance fixes. The developer will reconcile and retest
software, but the control point must ensure the reconciliation
has been done.

Tools to facilitate this process include Parallel Development
Manager and Endevor on the Hitachi, and basic library and
ASClII file compares.

8. Migrate the reconciled source to a separate V&V or Change Control
acceptance environment; compile the reconciled source to
create executables by the control point.

9. Completely test the application to ensure it is production Verification
ready; failures are defined to developer, who modifies, tests,
and then redelivers the source to the control point. This
separate testing ensures the executables were created from
the source and that the executables produced the predicted

results.
10. Migrate the modules from the acceptance region to Change Control and
production, (executables go to production and source is Verification

migrated to the baseline library—generally this is on the
production machine to protect the asset integrity, but as long
as there is only one way to write to this library, moving it to
something other than the production machine is just as
effective for configuration control.)

* Acceptance Y2K Development: containing the system source and
production software associated with Year 2000 changes, isolated for
system testing;

® Acceptance Maintenance: containing the system source and production
software associated with change introduced through the maintenance
stream, isolated for system testing;

|
3-4

HUD Year 2000 Readiness Guide
January 5, 1998

Chapter 3 4 Configuration Management

® Staging to Certification: containing the system source and
production software associated with tested Year 2000 changes,

ready to undergo future date testing on a fully compliant platform;

® Staging to Production: containing the system source and produc
software associated with tested Year 2000 changes, ready to be
reintroduced into production.

tion

» ldentify the components to be controlled. Some development teams

have done much of this in order to have the system scanned during

Impact Assessment. That effort can be used as the base for the initial

component identification of the system).

» Consistent with HUD’s naming conventions, employ naming
conventions that would, for example, distinguish between versions;
indicate bridges; and designate already renovated software.

» Confirm that you have source and objects that created the production
object. Recompile source, and relink. Compare the results of identical

test scenarios processed against both the current production and th
recompiled version.

» Establish a single point of contact, a library or release manager,
responsible for controlling access to the libraries. All software
distribution and reintroduction must pass through this single control
point.

» Establish specific procedures to prevent accidental introduction of n
compliant code into your environment.

» Establish rigorous update procedures for libraries and assign
enforcement responsibility. Control of the libraries is absolutely
essential for the integrity of the configuration management process.

e

on-

» Describe every change and obtain the proper authorizations to schedule
and introduce the change. Emergency changes can follow an expedited

version of this procedure.

3. 5. Tools to Facilitate Configuration Management

On the Hitachi, automated configuration management support is provided
by Computer Associates’ Endevor product. It is not necessary to
implement all the capabilities of Endevor to take advantage of some of its
features. For example, the developer can employ the library managemen
features for source code without also implementing software migration

capabilities of the package.

The Computer Associates' Parallel Development Manager (sedlUbe
Year 2000 Tools Overview, Document Fn the Reference Library)

works with Endevor to support the configuration management proceg
the Hitachi. Software Quality Assurance (SQA) from Arkdata AB is §
being evaluated as an automated configuration management tool fq
Unisys platform. On the PC/LAN, Source Safe provides some lib
management capabilities for source code. PVCS is also a helpful tg
this regard.

s on
still

I the
rary
ol in

3-5

Chapter 3 4 Configuration Management

HUD Year 2000 Readiness Guide
January 5, 1998

3.6. A Process Overview

The following process does not require the configuration management tools
in Section 3.5above. It can, however, be supported by those tools.

1.

2
3.

10.
11.

12.

13.

14.

The analyst describes a change.

. The programmer identifies the components to be included in the release.

The librarian delivers the source modules to the programmer following
naming conventions that identify the baseline and notifies the
programmer of other programmers who have the code checked out.

The librarian annotates the library records with the programmer who has
it, the release name and the expected release date. The librarian notifies
other programmers who have a version of this code checked out to them,
that the code has been checked out again, to whom and for what release.
The programmer changes and tests modifications to the baseline in
accordance with the change requirement. Programmers are to review
their changes with other programmers who have the same code checked
out to identify and possibly coordinate their activities to minimize
functional collisions.

The project leader notifies the librarian that the programmer tested
software is ready to be moved to the independent testing region
(acceptance region).

. The librarian assures that the software is fully reconciled with the current

production version and that the only differences are those introduced by
this specific release. Otherwise the programmer performs the necessary
reconciliation and returns the software to librarian.

. The librarian authorizes the recompilation of the software in the

acceptance region to assure that the production software has been created
from its source.

. The librarian freezes the acceptance region to prevent interjection of any

other source of software change during testing.

Programmers, users or other independent teams test the system.
Problem reports are referred to the programmers for resolution;
authorized software changes are corrected and returned to the librarian
(step #6).

The librarian is notified and authorized to promote a tested release into
the production staging libraries.

The librarian moves the appropriate components to the production
staging library, including required HUD documentation. The librarian
captures source components that created the production version in a
source staging library.

The librarian notifies the Computer Services Group (CSG) to move the
staging libraries into production. When CSG confirms the action, the
librarian updates records/naming conventions to record the current
production version number, to record that the software has been checked
back in with the implementation of the release, and to notify others who
have software checked out to them, that a release has been implemented
and reconciliation with it will be required.

3-6

